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Spherical, Cylindrical and One-Dimensional Plows 

of Compressible Fluids 

Joseph B. Keller 

I. Introduction 

Relatively few boundary value problems involving 

spherical or cylindrical flows of compressible fluids have 

been solved exactly.  In order to solve more problems of this 

type, particularly those involving variable entropy, we have 

investigated the flow differential equations, at first 

without regard to initial or boundary conditions.  In this 

way a class of non-isentropic solutions of the differential 

equations, depending upon an arbitrary function, has been 

obtained.  Then, in the second phase of the investigation, 

the arbitrary function is adjusted to satisfy particular 

initial or boundary conditions.  In this way the free expansion 

of a sphere of gas into a vacuum has been treated, as well as 

the propagation of finite and strong shocks in variable media. 

The latter treatment includes Primakoff's point-blast solution 

as a special case. 

The method of procedure is quite simple.  In section II 

the problem is formulated in Lagrangian variables.  In 

section III a class of solutions is obtained by the method of 

separation of variables.  In section IV these solutions are 

specialized to isentropic flo\-;.  In section V the solutions 

are applied to the determination of strong shock waves 

propagating in variable media.  In section VI finite shocks 

in variable media are considered. 

II. Formulation 

We consider the motion of an inviscid, non-heat- 

conducting fluid, obeying the polytropic equation of state. 

The one, two and three dimensional cases will be treated 

together.  In the three dimensional case y{h,t) represents 
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the radius at time t of the particle with the Lagrangian 

coordinate h, which is defined by the equation 

•(h,t) 

(1) h = \ rn_1p(r,t) dr      n = 1,2,3- -I y(o,t) 
In the above equation p(r,t) is the density at time t and 

radius r, and n is the dimension, which is 3 "Ln the spherical 

case.  In the two dimensional case y represents radial 

distance from an axis, and in one dimension y is a cartesian 

coordinate. 

It is further assumed that all flow variables depend 

upon y and t only and that flow occurs only in the y direction. 

This is the assumption of spherical, cylindrical or planar 

symmetry. 

Prom the definition of y, the particle velocity u is 

given by 

(2) u = y„ 

Similarly from (1) the density p or specific volume t; are 

given by 

H! V = p  = y  yh 

Because of our assumptions concerning inviscidlty and 

non-conduction, the entropy s of a particle Is independent 

of time (at least between successive shocks).  Thus we have 

Ik) s = s(h) 

The function s(h) is given by initial data or by shock 

conditions, and is assumed to be known. 

The pressure p is given by the equation of state 

(<) \ ; P = P(pfS) = g{*r,s) 

^or a polytropic gas or- liquid 



(6) Sit, a)  = g0 + A(s)2f
Y 

The functiorx A(s), the ac.iabatic exponent y,   and the internal 

pressure &    are assumed to be known. 

In terms of the above defined quantities, the equation 

of motion is 

(7) ytfc = -yn'1[gu(yn"1yh)h + gs-\J     • 

For a polytropic gas or liquid this becomes, using (6), 

,Q\  .   _  ,/ \/ n-1  S-Y-1, n-1  N  n-1  . , n-1  ^-v n-1 (8) ytt = YA(s)(y  yh) 
T  (y  yh)h y   -Ah(y  

yhJ   y 

• 

Equation (3) is a second order partial differential equation 

for y(h,t).  The coefficient A is assumed to be a known 

function of s, and by (h.) ,   of h. 

The problem we consider is that of finding solutions of 

(8).  From a particular solution, the flow variables can be 

found by using (2), (3)> Ik)   and (5)« 

III.  Product Solutions 

Let us seek product solutions of (8) of the form 

(9) y(h,t) = f(h)j(t) 

Inserting (9) into (8), and separating variables we obtain 

do r -xjn^-T)-i = o 

(11) -A[{fn-1f')"YJ,fn"2 -A*(fn~V)-Y fn"2 = X   . 

In those equations X is an arbitrary separation parameter and 

primer represent derivatives with respect to t in (10) and 

with respect to h in (11). 

To solve (10) we multiply by j' and integrate, obtaining 

r-io\ L ,' v2     X   .n(l-v)   1        .   •  . 
(12> ?U   >  " ri(l-y) S = £a       (Y +  1) 



(1.3) £•{ j  ) - X lO-: j = £1 (Y 1) 

Here a is an integration constant.  Thus, unless j is constant, 

which is possible only if "X. = 0 or j ~ 0, we have the solution 

<*) /[nTlV^1^^ 
-1/2 

"dj - t   (Y/D 

(15) j [2X log j +aj'"1/2 dj = t (Y = 1) 

The integration constant in {li+)» {'-•-$)   has been set equal to 

soro without 1oy.<= of generality since it merely shifts the 

origin of time. 

To solve (11) we differentiate out and obtain 

(16) rAif"^'1 + (n-i)fn"1(f')2](fn"1f,)'Y"1 

- fn-2(fn~V)^ A' = X  . 

We now consider the inverse function h = h(f) and denote 

h'(f) by q(f).  Then (l6) becomes 

(17) yA[-q\-lf
n-1+(n-l}?n'2q-2][Tn-1

q-1]-V~1   fn"2 

+ fn-2j-fn-l -1]"
Y A'(1I) = X 

We shall first treat the case y ^ 1 by introducing z(f) and 

5(f) defined by 

(13) Y-l B(f) = A[h(f) J 

With these definitions, (17) becomes (prime denoting 

differentiation with respect to f) 

(10)  z' + z[-(n-l)(y-l)f"
J- +1^ (log B) ' 

+ ^(r-D f(n-l)(Y-l)+l .. n 
yB ~ 
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Y-l 
An integrating factor of (19) is f-(n_1)(Y-1)D Y and the 

solution is (with G a constant) 

l-« f 
T»~VY (20)    fe = f(n-D(Y-l)s Y  [G . X(Y-l) f AT*" df] 

Thus we have q from (18)   and  (20),   and finally  since h'   = q, 

-JL. 
Y-l (21)    h=J    fn-lB-l/Y Q.MYTV/   P i-l/Y df df + E 

Here 3 is an integration constant. 

Section (21) gives f(h) implicitly, and thus provides 

a solution of (11) for y ^ 1.  The solution may bo written 

more simply by defining P(f) by 

G - Mjcli f f B-I/Y df 
Y-l 

(22)        F(f) = 

If X T
4

' 0 this can be solved for B(f) and yields 

(23) 3(f) = (-\f)Y(f')~Y P 

The solution for the flow variables can now be computed from 

(2)-(5), (?), (21), (22).  We have for y f  1 and \ ^  0, 

remembering that f = yj~  from (9), 

(21+) 

(25) 

(26) 

u{y,t) = yj'j'1 

«(y,t) = -xy^Vp'Cyj"1) 

p(y,t) = gQ+ j"
nY Ftyj-1) 

Equations (2[i.)-(26) give the flow quantities.  In fact, these 

expressions yield a solution of  the Eulerian equations of 

motion Tor an arbitrary function F provided that j(t) is p;iven 

by (ll(J.  This is the first main result of this paper.  It 

is to be noted that in these solutions, u is proportional to y. 

In the excluded case y / 1, X = 0 we have instead of 

(2a)-(26) from (2)-(5), (9), (21) 
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(27) 

(28) 

(29) 

u(y,t)  = yjT j -1 
yt 

-l 

*(y,t) = jV^yj-ijo15? = Acyt"1) 

p(y,t) = g * rnY G
1
^   =g0+jet-nY   . 

The new arbitrary function b and arbitrary constant S.   have 

been introduced and the expressions simplified by using (II4.), 

which gives 

(30) j(t) = al/2t   . 

The corresponding solutions when y = 1 are obtained from 

(17) by introducing 3(f) as in (18), after which (17) becomes 

(3D 

The solution of (31) is 

1 -1  .  ,>„-l  B  , Xf q q   -(n-l)f   + — + — = 0 

(32) q(f) = fn"1B"1(f) exp j  -Xf3_1(f)df  . 

Thus 
f f 

(33) h(f) -    fn~13~1(f) exp f -Xf3_1(f)df df + E 

Equation (33) yields the solution implicitly, 

we define 

Again 

(3k) ?(f) = exp 

Then if X f  0 we have 

(35) 

jxp J  -XfB~X(f)df 

3(f) = -XfF(p')"1 

The solution for the flow variables, if y = 1 and X ^  0, Is 

again given by (21+)-(26) with y = 1 and j(t) given by (15). 

Similarly for y = 1 and X = 0 the solution is given by 

(27)-(29) with y = 1, G - i and j(t) given by (30). 
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• 

Equations (2l±)-(26) and (27)-(29) represent non- 

Lsentropic solutions of the flow equations depending upon an 

arbitrary function.  In order to construct these solutions 

explicitly one need merely evaluate the integrals in (11+) 

or (15).  Some special cases of these integrals yield results 

which are listed below for later use. 

(36)   i(t,.{[5^]i^lab5U^)t}=nri^ 

if Y/l, a=0, £L£i!^ _! 

t\1/zt 
(37) 5(t)--e-X if r? 1, a= 0, aLjpli = - 1 

(33)  j(t) = ^t2 + at + R if n(l-Y) = 1, a, 6 arbitrary. 

IV.  Isentropic Case 

The above solution can be specialized to the isentropic 

case by setting A = B = constant. Then from (22) and (32+) we 
obtain 

(39)  F(f) - [0 --Mriif^"1    Y^i 
2YB 

/Y   J 

>f2 (UO)  F(f) = exp Z*|_ Y = 1 

Thus   the   solutions  given by  (2[j.)-(2o}   become,   for  y / 1  and 
A  =  0 

(Ul)     u(y,t)   = yj'j"1 

(U2)    tr(y,t) = JV/Y[G - M*jU yV2]^ 
2YBT7Y 

0+3)    P(y.t)  = g   + rnr [G - ^U y2j"2" 
2Y3  -   • 

Y-l 

In  these   solutions   B  and  G are   constants  and   j   is  given  by  (llj.) 
For  X =  0,   and  all  Y  tho   solution     (27)-(29)   applies  with b 
constant. 
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For y =  1  and all \, (/.(.I) is unchanged, but the other 

equations become 

(1+1+) Al,t)  = jnB exp "A^3y 

-2 2 
(itf)  P(y,t) = gQ+ j"

n exp *J~jL-   . 

Here 3 is a constant and j is given by (15). 
As an example of these isentropic solutions, let j(t) 

be given by (36) and assume G = 0 in (1+2), (1+3) .  Then (1+1)- 
(1+3) yield the power solutions (if y 4  1, n^"1^ ^ -1) 

(1+6) u(y,t) = n(y?1)+2 yt"
1 

fy3,n(Y-lJ+2\2|l-v , .-lxT1! 
(US) P(y,t) = BO+B[V

1
{.1  

) J   (yt } 

V«  Application:  Strong Shocks In Variable Media 

Let us suppose that a shock given by the equation 
y = P.(t) moves into a variable medium of density p (y), 

pressure P_(y) and velocity zero.  The pressure p, velocity u 
and density p just behind the shock are related to the 

corresponding quantities in front of it by the shock 

conditions:  These conditions are 

n  (Y+DP+ (Y-DP0  v+n 

^    Pn    Y-l P+ Y+l Prt   Y
17*        lY F " ' 

(50)   u 
2(P -P0) f_.2p. 11/2 

£2po[(Y+Dp+ (Y~DP0]} •' 172 «v^ [TY**J5;'. 

.        f(Y+l»P+ (Y-D?01l/2 r(v+l)nlV2 ,51,      »-[ 5- 2j      «   [LltikJ 
O ^O 
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The second expressions on the right apply to a strong shock, 

for which p » p . 

We shall now assume that the flow behind the shock is 

a "product" solution given by (2l±)-{26),   and that the shock 

is strong.  We wish to determine the functions P(yj~ ), R(t), 

p (y) and P0(y) for which such a solution is possible.  To 

this end, we insert (2I4.) -(26) into (if?)-(51) and obtain 

(53) 
r^^sr^FCRj-1)!172 

«Y+1)P0<R> 

(5k) 
(Y+l)£g0+ j'^^Rj"1)}' 

11/2 

•2p~TRT 

Prom  (53)   3.n<3   (5^-i-)   wo have 

(55 o 5L = (Y-H)  j 
R      "   2        j 

Thus 

(56) R(t)   - RQ[j(t)] 
Y+l 

(t)l   d 

Inserting (56) into (53) and making use of (12), 

satisfied by j(t), we find 

(57)  F(X) = :  Po 
\ i 

-2ny  (2n+2)y-2 

n( 1-v)   O        •' o -a: (xR  ) &ov  o ' 

2nY 

Thus R is determined, F is related to p , and (53), (5^) are 

satisfied, although R , D, and X are still arbitrary.  We now 

insert (56), (57) into (52) to determine F.  We obtain, if 
EC   =0 



(58) P(x) = Pox 
n 

?  2n      -i-1/2 

°  + Dx2n 

Prom (57) and (58) we then find 

(59)  DQ(R) 

2F^X  o o 
Y+l 

f*r 2XR 2n kn    2n(Y:D I -3A' 
--,_°  H-DR^1 R  Y*1 
n(l-y)    o 

-6n+k (n-2)y-3n+2  2(n-2)y-6n+ 

In (58) and (59) F     is an arbitrary constant.  The corres- 

ponding results with g ^ 0 are somewhat more coriolicated: 

We have thus obtained a solution with a strong shock 

moving into a variable medium at rest, with density given by 

(59)•  The constants F , R , X and D are arbitrary in this 

equation, but only two essential combinations of these 

constants occur.  The shock curve is given by (5b), and j(t) 

by (lij.).  The flow is given by (2lj.)-(26) with F(x) given by 

(53).  The flow might be produced by a piston following one 

of the particle paths 

(60) ?(t) = Y0.i(t) 

The solution was deduced for Y ¥ tX  and X ^ 0. 

As an example of those solutions, let us suppose that 

•\> constant.  Prom (59) we find that this requires 

(61) D = 0 3n-2 
n-2 

The last condition can be fulfilled only for n = 3, in which 

case Y = 7.  (n = 1 leads to y = -1, which was excluded in 

the derivation, and n = 2 yields no value of y.)  In this 

case we have from (!/.(.), [$Q) 

(62) 
JTX      iVlO j = L^ptj 0   3P R"n 

P(x)  = x3 —£-°- 



11. 

The solution computed by using (62) in (2k)-(26) (with X < 0) 

is exactly the point blast solution of Taylor's type first 

found by H. Primakoff, 

VI.  Application;  Finite Shocks In Variable Media 

¥e may apply the above method to determine finite 

shocks in variable media.  Then we must satisfy the exact 

shock conditions (k9)-(5l) rather than the strong jhock 

conditions.  Inserting (2k) -(26) into (Ai.9 )-(5D yields with 

R     =   0 
"'O 

(63) 

(6k) 

-ARj 
LJx) 
, .n-l 

(Y+i)rnY?,+ (Y-DP0 

(Y+DP0+ (Y-Drnyp 
x   =  Pj -1 

Rj   j 
-1 P. 

.j^[(Y+l)j^F+(Y-l)?0]l/2 

(65) R = —— r(Y+i)j-
nYF- (Y-i)p i1/2 

Equations (63)-(65) are a set of two first order 

ordinary differential equations and one algebraic equation 

for the determination of the. four functions P(x) , R(t), P_(R) 

and p (R).  Equation (Ik) gives j(t).  This system is evidently 

underdotermined and will have infinitely many solutions.  In 

the strong shock case, however, p  did not occur and thus the o 
system was determined. 

To solve the above system we could impose some relation 

between p and p and eliminate both these functions by 

means of that relation and (6k).  A pair- of simultaneous 

first, order equations for F(x) and R(t) would result.  However 

these equations can be treated separately since, from (6k) 

and (65) we have by eliminating P, 
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(66)     R ^Ri'j"1 i [iXjlLtHjT^^YPoP^J 
-l*!1^ 

This is an equation for R(t) if the ratio PQp~  is given as 

a function of R.  (Equation (66) also holds when g ^ 0.) 

After solving this, (63) can be solved for P, and then p 

and p  can be obtained. ro 
We will now investigate the shock curve R(t) given by 

(66), in the special case in which ,j(t) is given by (36) with 

C = 0 and YP0P,  
= c

0 is constant.  The latter assumption 

means the temperature ahead of the shock is constant.  Making 

use of (36), (66) becomes 

<67>  * ~ 21n(ff)+2i Rt'
x ± IxilL 

U[n(Y-l)+2]' 
(Rf1)2 + cl 11/2 

If we now introduce TT(t) = Rt"  in (67) we obtain an 

equation for U in which the variables separate.  One solution 

is the constant solution 

(63) ov   n(y-l}+2' 

In this case, which is physically possible only when 
V+"l 

—-,—' 11, -s < 1. the shock curve is the straight line n(y-l)+2 

(69) R = lit = + c fl-  T}, .j'1/2 o^   n(y-l)+2; 

When *T does not have the value given by (68), the 

equation for TJ yields 

(70) 

U(t) 

TT 

Integrating (70) yields 



(7D     bt   = 1  a +(a-1)cos  9 
1-a 

Za^ 
-1 

13 

1 
^a^T   L.     eV+a-1   fM   9\ta-a+l 

,. „ .-1  all Here   9  =  cot       — ,    a c 
have 

v+1 
2n(Y-l)+il. 

and  b   is   a  constant.     Thus  we 

(72) T.Tt   =  -X • bt   cot   9 ab 

since bt is given in terms of Q by (71), R{ t) is given 
ab oarametricaily in terms of 9.  A graph of —R versus bt is 
co 

given in Figure 1 for n = 3 and y = l.I|, which represents a 

spherical shock in air.  When the minus sign is chosen in 

(67)-(71) the same curves are obtained as with the plus sign, 

provided t is replaced by minus t. 

For small values of t we have 

(73) R as Kt 
2a 

where K is a constant.  For y = 7 and n = 3 we find a = •w  and 
2 /c> 

thus R <%* t ' , which is the behavior of Frimakof f' s point 

blast solution for small t.  For large t, R behaves linearly 

in t, as in (69). 

To determine po and F, we have from (65) and the condition 

YP0P0 

ilk) 

-1 

_ 2pcR
2-(y-l)Po XllD-:n 

(^+l)j"nY     (y+l)c; 
Y 

Thus, if dot denotes time derivative and prime denotes 

derivative of a function with respect to its argument, we have 

(75)  p =_2x,p;R33nY+2  ^ny+    ^.ny-1.^ 

(y+l)c 
d-~o 

Y~l/ v- 'n .ny , -nv 
-  ^T(P0

R
J   

T+nYP0J    ' 

F   (R.1   X -Rj     j   ) 

'sing  (7U-),   (75)   in   (63)   yields   the   following  equation  for 
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(76) •&hr  (P^3Jnr+ 2PriRRjnY+ ^jny-1., , 
L(Y

+
1)C o 

-^(p^^tp^V) -XR^-V.cZ^Rj^-Rj^') 
1-1 

0 0 

5  -2^2 2Yco R 
(Y+Dc 

Y+l 

-1 

Upon introducing p  = p*R, the above equation can be integrated 

yielding p [R(t)] as a function of t.  To obtain p (R), we 

must insert t = t(R) from (71), (72) into this result.  Then 

when p [R(t)j is known, F can be found from (7.'x).  These 

calculations will not be carried out here. 

VTX.  Free Expansion and Other Problems 

Tn this section some flows described by the preceding 

"product" solutions, will be discussed.  First, let us consider 

the flow given by (I4.I )-([|_3) with g  = 0.  This describes the 

isentropic flow of a gas.  If j'(0) = 0, it starts from rest. 

If the constant G is chosen so that p = 0 for some value of 

yj"* , th^n p remains zero for this value of yj~ , which 

therefore represents a "free" surface of the gas.  Thus the 

flow represents the free expansion of an isentropic gas into 

vacuum.  The equation of the free surface is y = AP. j(t), 

where v  represents the location of the free surface at t = 0. " o 
In a similar way (2U-) - (26) may represent the free expansion 

into vacuum of a gas with initially variable entropy, provided 

g = 0 and F(yj~" ) vanishes for one value of its argument. 

For certain choices of j(t), this solution can also represent 

the collapse or expansion of a hole, or the initial 

contraction of a sphere of gas toward the origin due to an 

initial inward motion, followed by momentary rest and 

subsequent expansion.  When g  is not zero, similar motions 

of a liquid are described. 
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VIII.     Other Solutions   
In tike preceding  sections product solutions of (3) 

were  considered.     In this   section two other kinds of solutions 

will  be  examined.     First,   let us assume  that 

(77) J =  Hat  *  (ife)      . 

Here   c  and  ? are  constants.    ¥e  find  for the  flow quantities 

(73) u = yt  = of = chr1 ij}} 

(79) r= p_1  = Se'V1-1" 

(30) p  =  Ap*   -  A(afr1y2~nir1)Y 

Me   see   that   the   flow quantities  are   independent  of  t,   or   in 

other words,   that  a   solution  of   the   form (77)   yields   steady 

flows. 

Inserting  (77)   into  (8)  yields 

C811    a2? = TA(sfn-1r)-Y-1{?rn-1r)' prn_1 + Ah(Bfn"1f rV1"1    . 

Since   f   is  a   function   of ct+ph ana   t doesn't apoear   in   (01), 

h  cannot aopear cither.     Thus  A   is   constant and   A,    =  0.     Kow 

if x denotes  the   arpuTient  of f,   and   If we   consider  the-   inverse 

function x(f),   we   obtain from  (SI)   the   following equation 
for q(f)   3   iff) 

(•52)      -c2qq-'3  = YAf Bf^ V VT~ Ve^"1^"3 *0(»-l)l*-*q*)fM*-\ 

This equation  is fiact and yields upon  integration 

(81)       bf^Ha-l)qY-l + l q-2   a B  ,     b e J^l_    ^     Y ^ 1 

a   iT-D 
2 

(31;)       Sj-q"2 + A  log q =  (rs-l):*f +D ,        y= 1     . 

ll-yr-c 5   is  a  constant. 
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Pro^a  (?S)   and   tec   facts  that  f = q.     ,   f = y,  we have 

1 5) u = qfyl" 

Thus tne steady solutions are obtained from the algebraic 

equation (81) or (8J|.). 

.4 more Interesting type of solution is given by 

(86) y = taf(K(h)t) 

Here a is a constant, and f,l are functions to be determined. 

These solutions an- like the type considered by Guderly, 

'Taylor, von Neumann and Calkin and Courant and Priedrichs. 

Inserting (26) into {5) yields 

(3?)  (a-l)ata"2f + ZaKtr'1? + K2taf" 

= Y & ft***1**- Hi] ~Y" t*{n~1} f*-1 tan+1 

+ AhL
a(R-1)?r-1[tf-n+1fn-1Kf]'Y   - 

Tn order that "a  occur in this equation only in the combination 

x = H(h)t, we find the following expressions for 5(h) and A(h} 

C3-:} i = hi^cj^ •    * = CRY-
1

K
C+1

     . 

Here c = an(l-y}-Y-2a+2, D Is a constant and A  is constant if 
eCY-l)+«+l = C. 

Under these conditions, (87) becomes 

C 39)  C a-1)af + 2axf+ K
2
Y = xCfC""X}C1_Y)f ~YD 

f ( :cf , (n-l)xf 1   r  ,1     ,1 
n U + -17+ - p  j+ C(Y-D + c + Ij 



17. 

To reduce (39) to a first order equation, we follow 

von Neumann and Calkin, by letting 6 = (a+y)[2+n(y-1)]   and 

(90) x = e 1- = e6sF 

Then   (89)   becomes 

(11)      (a-l)aF + 2a(^ + 6)F+ (4L + 6-1) (^ + 5)F 

_  _(n-l)(l-Y) (JL+6)F]~V ye 
Y(^_ + 5-l)(~+ 6)P TVa3  ^ ds 

(T-+ 6)F v ds 

y( n-1 )(-£-+'5)F 
+ Sr2  +  er-e + c+1 

If we   now  let  q   =   (;rs,+ &)? we   obtain a  first  order 
equation  for  q   in  terms   of  F. 

»   t (92)        1- y^F rT?(n-l)(l-y)   -y-1 
(q-6F)4 

=  F (n-l}(l-Y/q   YD[YR+Y(n_1)qF-l+eY+a4.1_£j_(a_1)aF_2aq   < 

Special   cases  of   this  equation have   been  studied  by 
von  Neumann  and  Calkin. 
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